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Abstract

This paper considers a multi-unit ascending auction with two play-

ers and common values. A large set of equilibria in this model is not

robust to a small reputational perturbation. In particular, if there is

a positive probability that there is a type who always demands many

units, regardless of price, then the model has a unique equilibrium

payo¤ pro�le. If this uncertainty is only on one side, then the player

who is known to be normal lowers her demand in order to stop the auc-

tion immediately at the reserve price. Hence, her possibly committed

opponent buys all the units she demands at the lowest possible price.

If the reputation is on both sides, then a War of Attrition emerges.

Keywords: Multi-unit auction, uniform price, ascending auction, rep-

utation, aggressive bidding.

JEL Classi�cation: D44
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1 Introduction

The simultaneous ascending auction is a remarkable application of economic

theory to the design of real economic mechanisms. Roughly speaking, in

such an auction the bidding continues until the total demand decreases so

that it matches the supply. This format has been used by the US Federal

Communication Commission since 1994 for the purpose of allocating radio

spectrum for telecommunication services. More recently, its version was used

in auctioning o¤ UMTS licenses in Germany and Austria.

Despite a great progress in understanding various incentives faced by

bidders in this auction, the simplest theoretical model su¤ers from a serious

de�ciency: there is a multiplicity of equilibria, and consequently the model

has virtually no predictive power.

This paper shows, that this multiplicity of equilibria is not robust. Intro-

duce an arbitrarily small but positive probability that bidders may be of a

behavioral type that demands large quantities, even if prices are high. Then

there is a unique equilibrium payo¤ pro�le and that fact does not depend

on the size of the perturbation. This is referred to as reputational perturba-

tion, because it creates incentives for normal bidders to maintain reputation,

namely to mimic those who are programmed to demand large quantities.

This result is obtained in a model of ascending auction with two bidders and

many units of a homogeneous good for sale, in which the value of a unit

is the same for both bidders regardless of quantities acquired, but it is not

necessarily common knowledge.

If the reputation is one-sided (only one player may be behavioral, but

the other one is certain to be normal), then in any equilibrium there is no

delay. The player who has no reputation decreases his demand to the level

that clears the market, in order to prevent the price from rising. If such a

strong asymmetry occurs, the seller will not obtain any additional revenue

beyond the reserve price.

Two-sided reputation is investigated by means of a simpler model with

known common values. The game has a �avor of a War of Attrition; its

unique equilibrium is in mixed strategies. Each normal bidder decreases
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his demand to clear the market with some density over some price interval.

However, some surplus may stay with the bidders, since the expected price

may still be less than the value of the object.

The overall message for the seller interested in maximizing the revenue is

negative, though, even in the case of two-sided reputation. The revenue may

depend sensitively on the value of parameters that are di¢ cult to observe,

such as the relative likelihood of behavioral types.

2 Literature and contributions of this paper

It is known that there is a great multiplicity of equilibria in a standard

ascending or uniform price multi-unit auction, particularly if the values are

common. Very low prices, even equal to an exogenous reserve price, may be

supported by an equilibrium. For instance, assume that bidders implicitly

split the total number of units among themselves and stick to their designated

shares for any price. No player has any incentive to deviate from this strategy

pro�le. Any deviation to a lower demand does not a¤ect the price, but

assigns fewer units to the player and hence results in lower payo¤. Any

deviation to a higher demand rises the price but ultimately does not a¤ect

the assignment, again resulting in lower payo¤. Equilibrium strategy pro�le

results in obtaining the agreed share at the lowest possible price. Other

allocations and prices can be supported as equilibrium outcomes too.

Obviously, this collusive-seeming equilibrium is not revenue-maximizing.

A possibility of low revenues was �rst noticed byWilson (1972), in the context

of a divisible-object and sealed-bid version of the model, see also Back and

Zender (1993). Riedel andWolfstetter (2006) show that if the marginal values

are known, decreasing in quantity and not equal across agents, then there is

a unique equilibrium through iterated elimination of dominated strategies,

in which the division of objects is e¢ cient and the price is minimal. This

result does not cover the case of common values; this is this gap that this

paper aims to �ll.

Some recommendations were given to the seller who, for some reasons,

must use uniform price mechanism. Back and Zender (1999) and McAdams
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(2007) give the seller an opportunity to adjust the supply strategically af-

ter bidders announced their demands. Since bidders�collusive behavior is

sensitive to this quantity, they are not able to coordinate so well.

Another approach assumes that there are some noisy players who pur-

chase some part of the total supply, leaving an uncertain residual for the

strategic bidders. The probability of such a supply variation can be arbi-

trarily small, and still a unique equilibrium is selected as long as this noise

has a full support. This method of equilibrium selection was introduced by

Klemperer and Meyer (1989); Rostek et al (2009) is a recent application. The

model in this paper introduces a perturbation too, but of a di¤erent type.

All of the above papers consider multi-unit auctions in a sealed-bid con-

text. In contrast to that, this project focuses on ascending version of the

model, similar to Milgrom (2000) or Cramton (2006). This rises a possi-

bility of interesting dynamics, such as collusion (for instance, Cramton and

Schwartz (2002)). This paper studies dynamic reputational e¤ects.

From the point of view of the reputation literature the model of this paper

is closely related to Myerson (1991, section 8.8) and Abreu and Gul (2000),

who analyze bargaining problem with reputation. A multi-unit ascending

auction can be seen as a mechanism in which bidders negotiate/bargain how

to split the objects among themselves. One di¤erence is how the cost of

bargaining is speci�ed �in the classical bargaining model this is discounting,

in the multi-unit ascending auction this is through increasing price. The

connection between bargaining and ascending multi-unit auctions was made

by Ausubel and Schwartz (1999)

An important contribution of this study is an extension of Myerson�s

(1991) result to the case in which common values are not commonly known,

in the context of an auction. In particular, reputational e¤ects completely

dominate what players may know about the value of the objects. For in-

stance, suppose that player one knows the value and player two does not;

standard logic of the winner�s curse suggests that player two should yield

early. However, if player two has a reputation as de�ned below (no mat-

ter how small) and player one does not, it is player one who would yield

immediately.
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Myatt (2005) studies a War of Attrition with ex ante asymmetry in val-

ues rather than with common values; his result is that the player with lower

private value exits almost immediately if the two-sided reputational pertur-

bation is small enough. To complement this result, this paper provides an

example with one-sided reputation, like Myerson (1991), and demonstrates

that there may be multiplicity of equilibria if values are ex ante asymmetric,

like in Myatt (2005).

3 Model

There are L � 3 units of a good for sale. Let r � 0 be an exogenous reserve
price. There are 2 bidders, each one can buy at most L� 1 units.
The format of an auction is ascending. The price is continuously rising

and each bidder publicly announces how many units he wants to buy at a

current price. Bidders announce their individual demands by means of a

dial that can be rotated only towards lower values. Assume that bidders

can decrease their demand only by one unit at a time. Bidders can react

instantaneously to demand reductions by the opponent. If two bidders decide

to decrease demand at the same price, the nature uses a fair coin to determine

whose reduction is announced. The auction stops at the market clearing

price, the �rst price where the excess demand is zero.

The information is asymmetric in two ways. At the beginning of the

auction, nature chooses for each bidder i = 1; 2 (i) a type ti 2 f0; xig, where
ti = 0 denotes a "normal" type and ti = xi denotes a "behavioral" type; and

(ii) a signal �i 2 �i. For simplicity assume that the set of signal pro�les
� = �1 � �2 is �nite; let � = (�1; �2) : Bidder i learns his type and his

signal, (ti; �i). Assume that �, t1 and t2 are independent, but � comes from

an unrestricted joint probability distribution, where q� is the probability of

�. In the section discussing two-sided reputation, it will be assumed that �

is a singleton.

With probability 1 � �i bidder i is a normal type, ti = 0. The gross

value of one unit when � is realized is v� > 0. This formulation makes sure

that the value of the unit is constant across agents and does not depend on
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the quantity acquired by the bidder. This value however does depend on

the pro�le of signals, and therefore is only partially known to bidder i, who

knows the realization of signal �i but not of �j. Normal type of i has the

realized net payo¤ equal to (v� � p) zi, where p is the �nal price and zi is the
�nal allocation of units to player i.

With probability �i � 0 bidder i is a behavioral type, ti = xi. Behavioral
type always demands xi units for any price, a quantity that is treated as

exogenous in this paper, sometimes referred to as "greediness" of i. To assure

that seller�s revenue is bounded, assume that the behavioral type reduces his

demand from xi to zero at price max� v�:

History at price p must describe how and when the bidders decreased

their individual demands prior to price p. Thus, divide the path into stages,

where stage n also denotes the size of the excess demand at that stage. In

other words, stages of the ascending auction are counted backwards, with

stage 1 being the last one. Let the initial excess demand be �n. Consider an

auction that reached a stage in which excess demand is n 2 f�n; �n� 1; :::; 1g ;
let pn be the price at which the last demand reduction occurred and let zni
be the resulting demand of bidder i: The history in stage n; for any price

p � pn; will be identi�ed with a list of prices, at which reduction of demand
occurred, and the resulting demands:

hn =
�
(p�n; z�n1 ; z

�n
2 ) ;

�
p�n�1; z�n�11 ; z�n�12

�
; :::; (pn; zn1 ; z

n
2 )
	

where for every no = �n� 1; :::; n the following holds: pno � pno+1 and znoi 2�
zno+1i � 1; zno+1i

	
for both i = 1; 2 and znoi = zno+1i � 1 for some i. Each

element (pno ; zno1 ; z
no
2 ) denotes an event that one of the bidders decreased his

demand at price pno by one unit. If pno = pno+1; then after one of the bidders

decreased his demand at price pno+1, someone decreased the demand again

immediately. Initial element of this list denotes the reserve price p�n = r and

z�ni � L � 1 is an initial demand of player i. The �nal element of this list
must have n > 0 for the auction to still continue after pn.

The multi-unit ascending auction described above will be regarded as a

series of simultaneous-move auctions. Speci�cally, �x a history hn. It means

6



that the price and demands are (pn; zn1 ; z
n
2 ). Assume that bidders play a

simultaneous-move game, in which bidder i = 1; 2 chooses a �bid�bi � pn. If
bidder 1 has a bid lower than bidder 2, then his bid becomes a new standing

price in the next stage, pn�1 = b1 = min fb1; b2g, the new demand of bidder 1
is zn�11 = zn1�1, and the demand of bidder 2 remains unchanged at zn�12 = zn2 .

If there is a tie, b1 = b2, then the player whose demand is to be reduced is

determined randomly. The new history is hn�1 =
�
hn;
�
pn�1; zn�11 ; zn�12

�	
:

Let Fi (bij�i) be a probability that a normal bidder i who observed �i
decreases his demand at or before price bi � pn, where the dependence on

the history hn is implicit. A strategy for the entire game is a collection

of these functions, one for each history and a probability distribution over

f0; 1; :::; L� 1g which picks an initial demand (if history is null).

4 Behavioral type on one side

This section assumes that bidder i is known to be normal, �i = 0; but the

probability that player j is of behavioral type is �j > 0. Consider strategies in

which normal bidder j starts demanding xj at the reserve price and suppose

that at the beginning of this ascending auction there is some excess demand,

n � 1. Let yi = L�xj be a residual quantity for bidder i, once the behavioral
demand of bidder j is fully satis�ed.

The following is the main result of this section. All proofs are in the

Appendix.

Proposition 1 Consider any stage n � 1 with initial price pn, in which

�nj > 0, �
n
i = 0. Then the only equilibrium market clearing price is pn and

allocation to bidder i is yi units.

This is a closely related to the result developed by Myerson (1991, section

8.8) in the context of bargaining. The construction measures two forces that

would have to occur in any equilibrium in which both players do not reduce

their demands immediately. The �rst force is that after player j reduces his

demand, thus revealing his normality, player i must obtain particularly high

payo¤, call it wi. This is because if j does not reduce his demand (which
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happens with positive probability), then player i obtains particularly low

payo¤ from insisting on his high initial demand for some time and yielding

at a higher price. Since the expected payo¤ of player i over these two events

has to be at least as good as the available option of reducing the demand

immediately, the promise of wi must be attractive. The second force is that

when player j reduces his demand, he must obtain high payo¤, call it wj,

higher than the available option of waiting until player i ultimately reduces

his demand. The proof shows that these requirements for high payo¤s wi
and wj are not simultaneously feasible.

Proposition 1 makes sure that the construction of Myerson (1991) for bar-

gaining with discounting is still valid in the current auction context in which

cost of delay is linear. More importantly, the argument sketched above works

even if common values are not commonly known, as assumed in Myerson

(1991). Two remarks about common values should be made.

The �rst interesting observation is that this result does not depend on

set � or the distribution over the signals. For example, suppose that player

i knows the true value of the unit, while player j does not. One may argue

that this additional knowledge gives player i an advantage: it makes bidding

less attractive to player j, due to winner�s curse. This may force player j to

yield before player i.

Equilibrium of this type is reported by Milgrom and Weber (1982) (see

Theorem 7) in the context of common-value second-price auctions with a

single unit. The fact that signal of j is a garbling of a signal of i implies that

in any equilibrium it must be that one of the bidders wins with probability

zero. Proposition 1 says that in the current context this consideration is

completely dominated by a possible existence of a behavioral type on one

side. Regardless of which player has a superior knowledge about the value of

the object, the player who is known to be normal yields immediately against

his possibly behavioral opponent.

Second remark is that the assumption about common values cannot be

relaxed. Without it, there may be multiplicity of equilibria even if there is

a reputation (on one side). The following example considers players whose

values are asymmetric ex ante, a case studied by Myatt (2005), but focuses

8



on one-sided reputation, like in Myerson (1991).

Example 1 Suppose that r = 0; xi = xj = 2; and L = 3: Values are

commonly known but they are not common. In particular, assume that i

is value-strong, but reputation-weak. That is, let vj < vi and assume that

player i is known to be normal, �i = 0 and player j is possibly committed

0 < �j � 1�
vj
vi
: For any number ai such that 0 � ai � 1

vj
; a pair of functions

�i (b) = aib+ (1� aivj)

�j (b) =
b

vi

for 0 � b � vj is an equilibrium. Similarly, for any number aj �
�j

vi�vj ; a

pair of functions

�i (b) =
b

vj
�j (b) = ajb+ (1� ajvi)

for 0 � b � vj is an equilibrium.
If aj =

�j
vi�vj , then the equilibrium is the limit point of the sequence of

unique equilibria in the two-sided reputation model (Myatt (2005)), when one

considers a sequence of models with �i ! 0. Notice that if we further assume

that �j ! 0; we have that �j (b) ! 1 for all b and hence the value-strong

player wins the auction at the lowest price with probability one, regardless of

what the relative reputational pro�le is.

5 Behavioral types on two sides

This section investigates a scenario in which there is an uncertainty about

the type of both players, �i > 0 and �j > 0: Abreu and Gul (2000) study a

similar model in the context of bargaining.

It is not di¢ cult to imagine the shape of the equilibrium. Once one of

the players reduces his demand, he loses his reputation and the game enters

the phase of one-sided reputation. According to Proposition 1, that player
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must keep reducing his demand until excess demand vanishes and the auction

stops.

Assume that v is known and let !i =
yi

xi�yi . Consider a strategy for bidder

i, in which if a normal type ever decreases his demand from xi, then he

continues decreasing it until it reaches yi: That is, after the initial reduction

by player i, his strategy in all remaining stages n < �n involves Fi (bi) = 1 for

any bi � pn:
In the initial stage �n, de�ne �i (bi) = (1� �i)Fi (bi) to be the probability

that (unconditional) player i decreases his demand for the �rst time before

or at the time when the price reaches bi. The following proposition states

that if functions (�1;�2) have a particular form then they generate a unique

equilibrium payo¤ pro�le.

Proposition 2 If 0 < (�i)
!i �

�
�j
�!j , then the unique Perfect Bayesian

equilibrium payo¤ pro�le is generated by a strategy pro�le that involves(
�j (b) = 1�

�
v�b
v�r
�!i

�i (b) = 1� �i
�
�j
�!j
!i

�
v�b
v�r
�!j

for b 2
h
r; v � (v � r)

�
�j
� 1
!i

i
.

The unique equilibrium payo¤ pro�le can be obtained by evaluating the

expected payo¤ (de�ned in the Appendix, equation 8) at price r. Let  =

�i
�
�j
��!j

!i ; then in the two-sided version, payo¤s ultimately are(
ui (r) = yi (v � r)
uj (r) = (xj (1� ) + yj) (v � r)

(1)

6 Conclusions

This paper discusses how to meaningfully analyze a model of multi-unit as-

cending auction with common values. The benchmark model, without per-

turbation, has many equilibria that are very di¤erent from each other and

thus cannot provide any guidance to an auction designer. However, if this
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model is modi�ed to allow a nonzero probability that there are players who

insist on high quantities regardless of the price, then the unique equilibrium

payo¤ emerges. The analysis of this equilibrium can now shed some light on

the properties of this auction.

Auction designers usually ask two questions: "is the auction e¢ cient?"

and "what are the revenue properties of the auction?" E¢ ciency does not

play any role in the context of common values as any division of units across

agents is e¢ cient.

The news for the revenue is mixed at best. The seller�s revenue can be

computed by taking the whole surplus available in the auction and subtract-

ing the surplus that will be given to the bidders in equilibrium (equations 1).

Let 0 < �i � �j and suppose that xi = xj: The revenue can approach the full
surplus, vL, if the auction is symmetric and players are greedy (as �i ! 0

for both players, �i
�j
! 1 and x! L). But the revenue can approach as little

as rL, if the auction is not symmetric or players are not greedy (�i
�j
! 0 or

x! L
2
). Thus, the revenue depends sensitively on parameters that may not

be easy to observe by the seller ex ante, such as �i
�j
:

7 Appendix

7.1 Proof of Proposition 1

The following lemma provides an inductive step.

Lemma 1 Fix n = 0; 1; :::; X � L � 1. Suppose that in any stage n with
(pn; zn1 ; z

n
2 ) in which excess demand is n and �

n
j > 0, �

n
i = 0; it is true that

the only equilibrium market clearing price is pn and equilibrium allocation to

player i is yi units.

Then in any stage n+1 with
�
pn+1; zn+11 ; zn+12

�
and �n+1j > 0, �n+1i = 0; it

is true that the only equilibrium market clearing price is pn+1 and equilibrium

allocation to player i is yi units.

Proof. Consider excess demand of n + 1 units at the starting price pn+1.
Fix an equilibrium.
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Let Fj (bj�j) be the probability that normal player i decreases his de-
mand for the �rst time before or at b, conditional on observing signal �j;

let �j (bj�j) =
�
1� �n+1j

�
Fj (bj�j) : De�ne ~Rj (�j) to be the greatest price at

which player j of signal �j reduces his demand

~Rj (�j) = min
n
b : �j (bj�j) = lim

b0!1
�j (b

0j�j)
o

Let Rj = max�j ~Rj (�j) : Similarly de�ne �i (bj�i), ~Ri (�i) and Ri: The impli-
cation of the assumption that �j > 0 is that �j (bj�j) � 1 � �n+1j for all b

and �j:

Notice that Ri � Rj and �i (Rij�i) = 1 for all �i. This is because at any
price higher than Rj normal player i believes with probability one that j is

not going to reduce his demand.

Write R for Ri and contrary to the claim of the Lemma, suppose that

pn+1 < R:1

For any b 2 (pn+1; R) ; player j could reduce demand either at prices in
the interval [b; R] or at prices higher than R (including never). Let �b� be

the probability that player j reduces his demand at prices higher than R,

conditional on price b and player j observing �j. That is

�b� =
1� �j (Rj�j)
1� �j (bj�j)

Let �b = min� �
b
� and let

�
wbi�; w

b
j�

�
be the expected payo¤ pro�le at b condi-

tional on player j reducing his demand at prices less than R and conditional

on signal pro�le being �: Let qbi (�jj�i) to be the posterior probability of �j
conditional on b and �i.

1. It must be that for all �i

R < lim
b!R

X
�j

qbi (�jj�i) v� (2)

1Assume that ~Rj (�j) � R and ~Ri (�i) = R for all � 2 �: This is without loss of
generality. If there is �0i such that say ~Ri

�
�0i
�
< R; then only consider prices greater than

~Ri
�
�0i
�
in the proof below and only these signals that still may exit after ~Ri

�
�0i
�
: Similarly

for signal of player j:

12



Contrary to the statement, assume that there is �i such that

R = lim
b!R

X
�j

qbi (�jj�i) v� (3)

Player �i compares the payo¤ from exiting at at price b and at a later

price b# 2 (b; R) : The minimal payo¤ that player �i gets from exiting

at b is X
�j

qbi (�jj�i) (v� � b) y

The maximal payo¤ if player �i exits at b# is no higher thanX
�j

qbi (�jj�i)
�
(v� � b)x

�
�j
�
b#j�j

�
� �j (bj�j)

�
+
�
1� �j

�
b#j�j

�� �
v� � b#

�
y
�

which assumes that if j exits at a price in the interval
�
b; b#

�
, then the

quantity x demanded by player i is fully satis�ed at the lowest possible

price b. The former cannot exceed the latter, because then player �i
would exit before price reaches R. Hence

X
�j

qbi (�jj�i)
�
(v� � b)x

�
�j
�
b#j�j

�
� �j (bj�j)

�
+
�
1� �j

�
b#j�j

�� �
v� � b#

�
y
�

�
X
�j

qbi (�jj�i) (v� � b) y

or

X
�0j

qbi
�
�0jj�i

� �
1� �j

�
b#j�0j

��X
�j

qb
#

i (�jj�i)
�
v� � b#

�
y

�
X
�j

qbi (�jj�i) (v� � b)
�
y � x

�
�j
�
b#j�j

�
� �j (bj�j)

��
Now verify this inequality in the limit as b# goes to R �rst and then b
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goes to R. Let b# ! R: The LHS converges to zero, by 3. Hence

0 �
X
�j

qbi (�jj�i) (v� � b)
�
y � x

�
lim
b#!R

�j
�
b#j�j

�
� �j (bj�j)

��

Consider the square bracket. Note that for every " > 0; there is a price

b� strictly less than R such that for all b > b� and for all �j we have

" > limb#!R�j
�
b#j�j

�
� �j (bj�j). Replace the square bracket with

the term y � x"; which is strictly lower. Choose " < y
x
; so that y � x"

is strictly positive. Then we have that for every b 2 (b�; R)

0 >
X
�j

qbi (�jj�i) (v� � b)

This is a contradiction.

2. The bound �b converges to one: limb!R �
b = 1:

Note that since �j (bj�j) is nondecreasing, �b� is nondecreasing and
bounded above, so it is converging. Suppose that there exists � such

that limb!R �
b
� < 1; that is, player i of signal �i thinks that there is

a mass point of players j who reduce demand at R: Then there is an

� > 0 such that this �i reduces his demand at prices less than R � �:
(Otherwise player �i, who is supposed to reduce demand at a price

arbitrarily close to R, would bene�t from delaying this reduction to a

price just after R; the gain is bounded away from zero by (2), but the

cost of delay is arbitrarily close to zero). This contradicts the de�nition

of R.

3. Total payo¤ conditional on player j reducing his demand at some price

higher than b cannot exceed the total surplus available at price b.

Namely, for all �

wbi� + w
b
j� � (v� � b) (x+ y) (4)

4. With positive probability player i maintains his high demand for all

prices less than R; this expected payo¤ has to be at least as high as
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the expected payo¤ from reducing the demand immediately to y at a

current price b. Namely, for all �iX
�j

qbi (�jj�i)
�
�b� (v� �R) y +

�
1� �b�

�
wbi�
�
�
X
�j

qbi (�jj�i) (v� � b) y

Replace wbi� by its upper bound implied by inequality (4). Multiply by

the denominator of q�i (�jj�i) and sum over all �i; to obtain one equation
(where qb� is the probability of �, given b)X
�

qb�
�
�b� (v� �R) y +

�
1� �b�

� �
(v� � b) (x+ y)� wbj�

��
�
X
�

qb� (v� � b) y

(5)

De�ne �bL to be the set of � for which

(v� �R) y � (v� � b) (x+ y)� wbj�

and let �bU be its complement. Let �
b =

P
�bU
qb�:

Write the sums in (5) separately for �bL and �
b
U : Note that for all

� 2 �bL; one can replace �b� with its lower bound �b and the inequality
will hold. Likewise, for all � 2 �bU ; one can replace �b� with its upper
bound 1.

X
�bL

qb�
�
�b (v� �R) y +

�
1� �b

� �
(v� � b) (x+ y)� wbj�

��
+
X
�bU

qb� (v� �R) y

�
X
�bL

qb� (v� � b) y +
X
�bU

qb� (v� � b) y

which can be written as

X
�bL

qb�
�
��b (R� b) y +

�
1� �b

�
(v� � b)x

�
�
�
1� �b

�X
�bL

qb�w
b
j�

� (R� b) y
�
1� �b

�
(6)

15



Notice that for any b, it must be that �b > 0; or in other words �b

occurs with positive probability. If not, then inequality (5) would be

violated.

5. With positive probability player j reduces his demand at prices below

R: The payo¤ from this cannot be lower than the payo¤ from main-

taining the demand for x units. Namely, for all �jX
�i

qbj (�ij�j)wbj� �
X
�i

qbj (�ij�j) (v� �R)x

Multiply this inequality by the denominator of qbj (�ij�j) and sum over

all �j: Then write the sums separately for �bL and �
b
U : Note that w

b
j� �

(v� � b)x; use this observation to replace wbj� with its upper bound in
the summation over �bU to obtainX

�bL

qb�w
b
j� �

X
�bL

qb� (v� �R)x� (R� b)x
�
1� �b

�
(7)

6. Replace
P

�bL
qb�w

b
j� in inequality (6) with its lower bound in inequality

(7)

X
�bL

qb�
�
��b (R� b) y +

�
1� �b

�
(v� � b)x

�

�
�
1� �b

�0@X
�bL

qb� (v� �R)x� (R� b)x
�
1� �b

�1A
� (R� b) y

�
1� �b

�
Group all terms involving summation over �bL; divide by R�b > 0 and
conclude that �b is bounded away from 1 by a term involving only x

and y

�b � x+ y�b � y
x+ y�b

� x

x+ y
< 1
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The implication of part 6 contradicts part 2. Thus R = pn+1: Since it is

impossible that player j reduced his demand at pn+1 it must be player i:

The hypothesis of this inductive step is trivially true for excess demand

n = 0: The result follows.

7.2 Proof of the Proposition 2

Consider a stage when the reputation is two-sided and suppose
�
�j
�!j �

(�i)
!i :

If a normal bidder i is the �rst to decrease his demand at price bi, then

the game moves to the next stage in which reputation is one-sided. His

realized payo¤ is yi (v � bi) ; by proposition 1. Similarly, if bidder j, decides
to decrease his demand �rst, at some price bj, then the game moves to the

next stage in which reputation one-sided. Player i receives the quantity that

he demanded in stage 0, namely xi with a per unit pro�t v � bj.
Recall that in general �i (bi) denotes a probability that player i decreases

his demand by the time or at the time the price reaches bi. Given the strategy

of player j summarized in �j (�), the expected payo¤ of player i from exiting
at price bi > r is

ui (bi) = xi (v � r)�j (r) +
Z bi

r

xi (v � bj) d�j (bj) + yi (v � bi) (1� �j (bi))
(8)

Recall also the de�nition of Rj.

Rj = min
n
b : �j (b) = lim

b0!1
�j (b

0)
o

Let us establish a few properties of equilibria.

1. R = R1 = R2 < v:

2. For all b > R, �1 (b) = 1 � �1 and �2 (b) = 1 � �2. At price R;
normal type of player i believes that player j will behave as if he was

behavioral, as long as the prior �j > 0. Hence, player i is not exiting

only when he is behavioral himself.
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3. If �j is discontinuous at any given point b > r, then there exists " > 0

such that �i is constant on (b� "; b). If �j is discontinuous at any
given point b � r then �i is not discontinuous at b.

Suppose that �j is discontinuous at b. Then normal player i who is

supposed to exit before b but su¢ ciently close to b, is better o¤ by

waiting a tiny instant to some date just after b. The gain is discrete

since a positive mass of players j exit at b and xi > yi, while the loss

due to waiting is arbitrary small. For the second part suppose that

�i is also discontinuous at b. Then there is positive probability that

both bidders exit at b. On the other hand, if i waits a bit, this gives

a discrete increase of a payo¤, while a loss due to waiting is arbitrary

small.

4. If �i is continuous at b then uj is continuous at b.

See the de�nition of uj, above.

5. There is no interval (b1; b2) � (r; R) such that both �i and �j are

constant on (b1; b2). Both �i and �j are strictly increasing on (r; R).

For the �rst claim suppose not, and let b� be a supremum of upper

bounds of all such intervals, so that at least one bidder exits with

positive probability at every price just after b�. Let i be a bidder, whose

ui is continuous at b� (there is at least one). Note that ui and uj are

both strictly decreasing on the interval (b1; b�), so for a �xed b 2 (b1; b�)
there exists a positive constant " such that for every s 2 (b� � "; b� + ")
it is true that ui (b) > ui (s). In particular, this means that bidder i

cannot exit with positive probability at dates s 2 (b�; b� + ") and �i is
constant for all dates in (b1; b� + "). But then uj is strictly decreasing on

the interval (b1; b� + "), so bidder j cannot exit at these dates and �j is

constant there too. This is a contradiction, because b� was assumed to

be the supremum of all such intervals. The second part is a by-product

of the above.

6. Both �i and �j are continuous on (p;R).
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Suppose �j has a jump at b, then �i is constant just before b. This

contradicts that both are strictly increasing.

7. Both ui and uj are di¤erentiable on (r; R).

Utilities ui and uj are continuous on (r; R) because �i and �j are.

Since �i and �j are strictly increasing ui must be constant, hence

di¤erentiable.

8. It follows that u0i (b) = 0 for all b 2 (r; R)

The condition, u0i (b) = 0 for b 2 (r; R), implies that

0 = (xi � yi) (v � bi)�j (bi)� yi (1� �j (bi))

1

!i
(v � b) = 1� �j (b)

�j (b)

The general solution of the above condition is explicit and has the following

form

�j (b) = 1� (1� �j (R))
�
v � b
v �R

�!i
where the point (R;�j (R)) pins down the particular solution - the point yet

unknown. Since !i > 0 this function is increasing.

Two boundary conditions are �j (R) = 1��j and �i (R) = 1��i, which
implies (

�j (b) = 1� �j
�
v�b
v�R

�!i
�i (b) = 1� �i

�
v�b
v�R

�!j (9)

The additional boundary conditions are �i (r) � �j (r) = 0, which imply

v � (v � r)
�
�j
� 1
!i = R and�

�j
�!j � (�i)

!i

Eliminating R from the equations (9) gives the result:

�j (b) = 1�
�
v�b
v�r
�!i

�i (b) = 1� �i
�
�j
�!j
!i

�
v�b
v�r
�!j
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